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Equilibrium Statistical Ensembles and Structure of
the Entropy Functional in Generalized Quantum
Dynamics

Stephen L. Adler1 and L. P. Horwitz1,2

Received July 4, 1997

We review the microcanonical and canonical ensembles constructed on an
underlying generalized quantum dynamics and the algebraic properties of the
conserved quantities. We discuss the structure imposed on the microcanonical
entropy by the equilibrium conditions.

1. INTRODUCTION

In this paper we review briefly the generalized quantum dynamics (Adler,

1994, 1995) constructed on a phase space of local noncommuting fields. We

show that the equilibrium conditions on the microcanonical entropy imply
that the system decomposes thermodynamically to a sequence of adiabatically

independent subsystems, each with its own temperature. There is an equiparti-

tion theorem for the phase space variables of the system generated by the

linear combination of conserved quantities associated with each of these

independent thermodynamic modes.

We start with a review of our basic framework. Generalized quantum
dynamics (Adler, 1994, 1995) is an analytic mechanics on a symplectic set

of operator-valued variables, forming an operator-valued phase space S. These

variables are defined as the set of linear transformations3 on an underlying

real, complex, or quaternionic Hilbert space (Hilbert module), for which the

postulates of a real, complex, or quaternionic quantum mechanics are satisfied

1 School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540.
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(Adler, 1995; Stueckelberg, 1960, 1961, 1962; Finkelstein et al., 1962, 1963;

Horwitz and Biedenharn, 1984; Piron, 1976). The dynamical (generalized

Heisenberg) evolution, or flow, of this phase space is generated by the total
trace Hamiltonian H 5 TrH, where for any operator O we have

O [ Tr [ ReTr( 2 1)FO

5 Re o
n

^ n | ( 2 1)FO | n & (1.1)

H is a function of the operators {qr(t)}, {pr(t)}, r 5 1, 2, . . . , N (realized

as a sum of monomials, or a limit of a sequence of such sums; in the general

case of local noncommuting fields, the index r contains continuous variables),

and ( 2 1)F is a grading operator with eigenvalue 1 ( 2 1) for states in the

boson (fermion) sector of the Hilbert space. Operators are called bosonic or
fermionic in type if they commute or anticommute, respectively, with ( 2 1)F;

for each r, pr and qr are of the same type.

The variation of a total trace functional with respect to some operator

is defined with the help of the cyclic property of the Tr operation. The

variation of any monomial O consists of terms of the form OL d xrOR , for xr

one of the {qr}, {pr}, which, under the Tr operation, can be brought to the form

d O 5 d TrO 5 6 TrOROL d xr

so that sums and limits of sums of such monomials permit the construction of

d O 5 Tr o
r

d O

d xr

d xr (1.2)

uniquely defining d O/ d xr.
Assuming the existence of a total trace Lagrangian (Adler, 1994, 1995)

L 5 L({qr}, {qÇ r}), the variation of the total trace action

S 5 #
`

2 `

L({qr}, {qÇ r}) dt (1.3)

results in the operator Euler±Lagrange equations

d L

d qr

2
d

dt

d L

d qÇ r
5 0 (1.4)

As in classical mechanics, the total trace Hamiltonian is defined as a Leg-

endre transform,

H 5 Tr o
r

prqÇ r 2 L (1.5)



Generalized Quantum Dynamics 521

where

pr 5
d L

d qÇ r
(1.6)

It then follows from (1.4) that

d H

d qr

5 2 pÇ r,
d H

d pr

5 e rqÇ r (1.7)

where e r 5 1 ( 2 1) according to whether pr , qr are of bosonic (fermionic) type.
Defining the generalized Poisson bracket

{A, B} 5 Tr o
r

e r 1 d A

d qr

d B

d pr

2
d B

d qr

d A

d pr 2 (1.8a)

one sees that

dA

dt
5

- A

- t
1 {A, H } (1.8b)

Conversely, if we define

xs( h ) 5 Tr( h xs) (1.9a)

for h an arbitrary, constant operator (of the same type as xs , which denotes

here qs or ps), then

dxs( h )

dt
5 Tr o

r
e r 1 d xs( h )

d qr

d H

d pr

2
d H

d qr

d xs( h )

d pr 2 (1.9b)

and comparing the coefficients of h on both sides, one obtains the Hamilton

equations (1.7) as a consequence of the Poisson bracket relation (1.8b).
The Jacobi identity is satisfied by the Poisson bracket (1.8a) (Adler et

al., 1994), and hence the total trace functionals have many of the properties

of the corresponding quantities in classical mechanics (Adler and Wu, 1994).

In particular, canonical transformations take the form

d xs( h ) 5 {xs( h ), G} (1.10a)

which implies that

d pr 5 2
d G

d qr

, d qr 5 e r
d G

d pr

(1.10b)

with the generator G any total trace functional constructed from the operator

phase space variables. Time evolution then corresponds to the special case

G 5 Hdt.
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It has recently been shown by Adler and Millard (1996) that a canonical

ensemble can be constructed on the phase space 6, reflecting the equilibrium

properties of a system of many degrees of freedom. Since the operator

CÄ 5 o
r

( e rqrpr 2 prqr)

5 o
r, B

[qr, pr] 2 o
r, F

{qr, pr} (1.11)

where the sums are over bosonic and fermionic pairs, respectively, is con-
served under the evolution (1.7) induced by the total trace Hamiltonian, the

canonical ensemble must be constructed taking this constraint into account.

This is done by including in the canonical exponent the conserved quantity

Tr l Ä CÄ , for some given constant anti-Hermitian operator l Ä .
In the general case, in the presence of the fermionic sector, the graded

trace of the Hamiltonian is not bounded from below, and the partition function

may be divergent. When the equations of motion induced by the Lagrangian

L coincide with those induced by the ungraded total trace of the same

Lagrangian,

LÃ5 ReTrL

without the factor ( 2 1)F, the corresponding ungraded total trace Hamiltonian

HÃ is conserved; it may therefore be included as a constraint functional in

the canonical ensemble, along with the new conserved quantity Tr
Ù

l ÄÃCÄÃ(see

Appendices 0 and C of Adler and Millard, 1996) where

CÄÃ5 o
r

[qr, pr]

5 o
r, B

[qr , pr] 1 o
r, F

{qr, pr} (1.12)

It was argued that the Ward identities derived from the canonical ensemble

imply that l and l Ä are functionally related, so that they may be diagonalized

in the same basis (Appendix F of Adler and Millard, 1996). It was then

shown that, since the ensemble averages depend only on l Ä and ( 2 1)F, the

ensemble average of any operator must commute with these operators. Since
the ensemble-averaged operator ^ CÄ & AV is anti-self-adjoint, if one furthermore

assumes it is completely degenerate (with eigenvalue ieff " ), the ensemble

average of the theory then reduces to the usual complex quantum field theory.

As discussed in detail in Adler and Horwitz (1996), the phase-space

volume associated with the microcanonical ensemble can be written as

G (E, EÃ, n Ä , n ÃÄ ) 5 # d m d (E 2 H ) d (EÃ2 HÃ)

3 &
n # m, A

d ( n A
nm 2 ^ n | ( 2 1)FCÄ | m & A) d ( n ÃA

nm 2 ^ n | CÄÃ| m & A) (1.13)
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where we have taken into account the possible algebraic structure of the

matrix elements of the operators with the index A, which takes the values 0,

1 for the complex Hilbert space, 0, 1, 2, 3 for the quaternionic Hilbert space,
and just the value 0 for real Hilbert space. The invariant phase space measure

is defined by

d m 5 &
A

d m A (1.14)

d m A [ &
r, m, n

d(xr)
A
mn

where redundant factors are omitted according to adjointness conditions. We

have, furthermore, used the abbreviations n Ä [ { n A
nm} and n ÄÃ[ { n ÃA

nm}. The
entropy associated with this ensemble is given by

Smic(E, EÃ, n Ä , n ÄÃ) 5 ln G (E, EÃ, n Ä , n ÄÃ) (1.15)

It was argued in Adler and Horwitz (1996) that a large system can be
decomposed into a part within a certain (large) region of the measure space,

which we denote as b, corresponding to what we shall consider as a bath,

in the sense of statistical mechanics, and another (small) part which we shall

denote as s, corresponding to what we shall consider as a subsystem. It was

then argued that the phase-space volume can be well approximated by

G (E, EÃ, n Ä , n ÄÃ) 5 # dEsdEÃ
s(d n s)(d n Ãs) (1.16)

3 G b(E 2 Es, EÃ2 EÃs, n Ä 2 n Ä s, n ÄÃ2 n ÄÃs) G s(Es, EÃs, n Ä s, n ÄÃs)

Defining the variables

j 5 { j i} [ {E, EÃ, n Ä , n ÄÃ} (1.17)

it was shown (Adler and Horwitz, 1996) that the equilibrium conditions

which follow from the assumption that there is a maximum in the integrand

of (1.16) (which dominates the integral in the limit of a large number of
degrees of freedom) result in the set of equalities

1

G s( j )

- G s

- j i

( j ) | j 5
1

G b( J 2 j )

- G b

- J i

( J 2 j ) | j (1.18)

where J corresponds to the total quantities belonging to the full system. It was

then shown that the canonical ensemble obtained by Adler and Millard (1996)

r 5 Z 2 1exp 2 { t H 1 t ÃHÃ1 Tr l Ä CÄ 1 Tr
Ù

l ÄÃCÄÃ} (1.19)
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where

Z 5 # d m exp 2 { t H 1 t ÃHÃ1 Tr l Ä CÄ 1 Tr
Ù

l ÄÃCÄÃ} (1.20)

follows in a straightforward way. The quantities t , t Ãand the matrices (real,

complex, or quaternionic) l , l Ä are the equilibrium parameters defined by the

values of the members of (1.18) for each of the j ’ s (Adler and Horwitz,

1996); they therefore correspond to temperatures precisely as they emerge

in conventional statistical mechanics. We remark that Ingarden (1968; see
also Ingarde and Kossakowski, 1986, and Ingarden, 1979) has studied a

similar generalization of temperature in the framework of the statistical

mechanics associated with problems of optical pumping (in the diagonal form

which we shall discuss in the next section).

Replacing the operators and trace functionals in (1.20) by integrals over
d -functions, the partition function can be rewritten as (Adler and Horwitz,

1996)

Z 5 # dE dEÃ(d n )(d n Ã) exp{Smic(E, EÃ, n Ä , n ÄÃ)}

3 exp 2 { t E 1 t ÃEÃ1 Tr l Ä n Ä 1 Tr
Ù

l ÄÃn ÄÃ} (1.21)

By studying the dispersions of the variables in the canonical ensemble,

it was found (Adler and Horwitz, 1996) that the second derivative matrix of
the microcanonical entropy is negative definite, i.e., that

1 -
2Smic

- j i - j j 2 # 0 (1.22)

In the following we use the fact that this matrix is real symmetric to
diagonalize it, and in this way to construct a set of dynamical generators

over which the total entropy decomposes in a neighborhood C0 of the maxi-

mum entropy point.

2. DIAGONAL FORM OF THE SECOND VARIATION OF THE
ENTROPY

The negative-definite matrix (1.22)

D ij 5
- 2Smic

- j i - j j

(2.1)
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is symmetric and can therefore be diagonalized by an orthogonal transforma-

tion. Let aij (orthogonal ) be such that, in the neighborhood C0,

o
ij

akialjD ij 5 d kldl( j ) (2.2)

where the elements dl( j ) on the right-hand side are the negative eigenvalues.

Now, let us define, using these constant coefficients,

ek 5 o
i

aki j i (2.3a)

and hence

j i 5 o
k

akiek (2.3b)

It then follows that, in C0,

- 2S

- ek - el

5 o
ij

akialj
- 2S

- j i - j j

(2.4)

5 o
ij

akialjD ij 5 d kldl( j )

Since the crossed derivatives of S vanish, S must be a sum of functions that

depend on each of the {ek} separately, i.e.,

S 5 o
k

Sk(ek) (2.5)

The entropy is therefore additive (in C0) over diagonal ª thermodynamic

modes.º
The equilibrium parameters defined in the previous section,

x j 5
- S

- j j

5 { t , t Ã, l , l Ã} (2.6)

may be transformed in the same way, i.e.,

o
j

akj x j 5 o
j

akj
-

- j j

S 5
- S

- ek

(2.7)

5
- Sk(ek)

- ek

[
1

Tk

giving the diagonal temperatures [of the type considered by Ingarden (1968)].

We remark that, according to (2.2) and (2.4),

- 2S

- e2
k

5 dk , 0 (2.8)
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so that the ª specific heats,º entering as

-
- ek

1

Tk

5 2
1

T 2
k

dTk

dek

5 2
1

T 2
k

1

Ck

(2.9)

are positive, and by (2.7)±(2.9) are given by

Ck 5 2
1

T 2
k

dk (2.10)

3. EQUIPARTITION

We now consider linear combinations of the dynamical quantities

*i 5 {H, HÃ, CÄ , CÄÃ}

of the same form as the linear combinations of the parameters { j i } which
are their equilibrium values,

e k 5 o
i

aki*i (3.1)

the effective ª energiesº associated with the thermodynamic modes. Since the

determinant of the matrix a is unity, the microcanonical phase space integral

(1.13) can be written as

G ( j ) 5 # d m &
k

d (ek 2 e k) (3.2)

Since, however, as we have shown in Section 2,

ln G ( j ) 5 S (e1, e2, . . .)

5 o
k

Sk(ek) (3.3)

it follows that the phase-space volume factorizes on the diagonal parameters

G ( j ) 5 exp H o k Sk(ek) J 5 &
k

exp{Sk(ek)}

5 G (e1, e2, . . .) [ &
k

G k(ek) (3.4)

One can show that the free energy also becomes additive (Adler and Hor-

witz, n.d.).

Let us now consider the microcanonical average

K qr

d e k

d qs L 5
1

G (e1, e2, . . .) # d m &
l

d (el 2 e l) qr

d e k

d qs

(3.5)
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where {qr} are the canonical coordinates (fields) of the phase space. We now

write the right-hand side of (3.5) identically as

1

G (e1, e2, . . .)
&

l

-
- el # { e j , ej}

d m qr
d

d qs

( e k 2 ek)

replacing the d -functions by derivatives of the parameters of boundary step

functions; adding the constant ek does not affect the result. Integrating by

parts in the integration over phase space, we obtain

K qr

d e k

d qs L 5
1

G (e1, e2, . . .)
&

l

-
- el # e j , ej

H d
d qs

qr( e k 2 ek)

2 d rs( e k 2 ek) J (3.6)

The first term vanishes on the boundary, and we therefore have

K qr

d e k

d qs L 5 2
d rs

G (e1, e2, . . .)
&

l

-
- el # { e j , ej}

d m ( e k 2 ek) (3.7)

The derivative with respect to ek in the product of derivatives vanishes
when it differentiates the upper bound; its contribution is only from the

integrand, resulting in a factor 2 1. The other derivatives act only on the

upper limits. The product then results in the restricted measure

# e k , ek

d m ( e l 5 el " l Þ k) [ S k (3.8)

which can be rewritten as

S k 5 # { e j , ej}

d m &
l Þ k

d ( e l 2 el) (3.9)

According to (3.2),

- S k

- ek

5 G (e1, e2, . . .) (3.10)

We therefore have

K qr

d e k

d qs L 5
d rs

G (e1, e2, . . .)
S k (3.11)

We now use the factorization of G (e1, e2, . . .) in C0 to derive a relation

between S k and the additive entropies. In the limit of a large number of
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degrees of freedom, the leading edge of the integral defining S k dominates

the integral (Huang, 1987), so we may formally extrapolate, as a model, the

quadratic form (and associated factorization) valid in C0. From (3.4) and
(3.10) it then follows that

- S k

- ek

5 G k(ek) &
l Þ k

G l(el) (3.12)

One may integrate this equation to obtain

S k 5 #
ek

G k(e 8k)de8k &
l Þ k

G l(el) 1 G (el, l Þ k) (3.13)

Since e k cannot be 2 ` (the functional HÃis contained linearly and its positive

values are assumed to dominate for large values of the phase space variables),

the first term on the right-hand side of (3.13) along with S k must vanish as

ek ® 2 ` , and hence G must be zero.

We therefore obtain

S k 5 #
ek

de8ke
Sk(e8

k) &
l Þ k

e Sl(el) (3.14)

so that

S k

G (e1, e2, . . .)
5 #

ek

de8ke
Sk(e8

k)

eSk(ek)

5
1

(d /dek) ln #
ek

de8k e Sk(e8
k)

(3.15)

With the leading approximation for a large number of degrees of freedom
(Huang, 1987)

ln #
ek

de8k e Sk(e8
k) , ln e Sk(ek)

we conclude that

K qr

d e k

d qs L 5 2 d rsTk (3.16)

We finally make some remarks on the flows generated by e k , which,
for clarity, we recast to the form (summed on nm)

e k 5 ak0H 1 ak1HÃ1 ak(mn)Cnm 1 aÃk(mn)CÃ
nm

5 ak0H 1 ak1HÃ1 Tr(aÄ kCÄ ) 1 Tr(aÄÃkCÄÃ) (3.17)
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The Poisson bracket (1.8a) then contains a term which is the t-derivative,

by (1.9b), but there are additional terms of general type (1.10b). In Adler

and Horwitz (1996) it is shown that the terms in (3.17) which contain CÄ , CÄÃ

induce transformations on phase space which are commutators with aÄ k , aÄÃk
in the boson sector, and with aÄ k in the fermion sector, but anticommutators

with aÄÃk in the fermionic sector. Hence the elements of the diagonalization

transformation act as connection forms under evolution generated by the

effective mode energy functionals. Further discussion and application of these

results will be given in Adler and Horwitz (n.d.).
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